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FOREWORD 

This report has been prepared by Lockheed Missiles & Space 

Company for the Langley Research Center of the National 

Aeronautics and Space Administration under Contract No. 

NAS l-4760. This report describes the development and 

application of a photoelasto-plastic method to study the elasto- 

plastic stress distributions in plates containing centrally 

located simulated cracks utilizing “frozen stress” techniques. 

The results are representative of aluminum alloys. 
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SUMMARY 

The purpose of this program was to develop a photoelasto-plastic stress analysis 

method and to apply this method to study experimentally the stress distributions in the 

vicinity of simulated cracks. This method utilizes the frozen stress and creep char- 

acteristics of plastic materials to simulate the stress-strain behavior of aluminum 

alloys. During the development and verification of this method, two polymer materials 

were subjected to various thermal cycles, the maximum temperatures of which were 

significantly below the critical temperature. Below the critical temperature, polymer 

materials normally used in photoelasticity experience considerable creep. The strain 

and birefringence associated with this creep can be frozen into certain materials and 

subsequently sliced without relieving the frozen strain. 

A material and thermal cycle was selected which exhibited an effective stress-strain 

curve similar to the uniaxial stress-strain behavior of 2024-T3 aluminum alloy. 

%rfinite plate” models were machined from the selected material and subjected to 

constant tensile load and the appropriate thermal cycle to simulate 2024-T3 aluminum. 

The infinite plate models contained centrally located holes 1/8in. in diameter. 

Two thin plate models (l/S-in. thick) were subjected to tensile loads corresponding to 

uJ”l = 0.11 and 0.71. The stress distribution along a centerline normal to the 

direction of loading was determined for the two cases of oa/crl = 0.11 and 0.71. 

Two thick plate models (0.4-in. thick) were subjected to tensile loads corresponding 

to ‘J&1 = 0.41, 0.53. The stress distributions were determined adjacent to the 

hole along a line normal to the direction of load. 
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The method was then applied to plates containing centrally located simulated cracks. 

Crack lengths of 0. 1, 0.5, and 0.8 in. were investigated for various plate thicknesses. 

For each crack length, plates with thiclmesses of 0.1, 0.3, and 0.5 were each examined 

at two levels of plasticity. The stress distributions were determined adjacent to the 

crack tip along the line normal to the direction of load at the surface and the midplane. 

The stress concentration factors determined for the infinite plates with centrally 

located holes are in very good agreement with theory. The stress concentration factor 

for the thick plates were slightly higher at the midplane of the plates than at the surface. 

Due to the higher stresses at the midplane of the thick plates, there results a uz, stress 

normal to the load direction and parallel to the hole direction. This uz stress is 

maximum at the midplane and edge of hole and diminishes to zero a short distance from 

the hole. 

Based on the elasto-plastic stress distributions determined for plates with centrally 

located simulated cracks, some general observations can be made. First, the stress 

component in the direction of the load has the maximum value, not at the crack tip, but 

a short distance from the tip. This is caused by the yield condition at the edge of the 

crack tip being one based on a uniaxial stress while at a short distance from the crack 

tip, the yield condition depends upon the biaxial stress state for the surface and a tri- 

axial state at the midplane. Second, the magnitude of the maximum u 
Y 

stress occurs 

at approximately 6 to 7 mils from the crack tip. The magnitude of this stress tends to 

be higher at the midplane than at the surface. Third, at the midplane, at least for the 

thicker specimens, a rather high value for crz develops. It should also be noted that, 

similar to ax, the uz value is higher at a short distance from the crack tip than it 

is at the crack tip. 
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Section 1 

INTRODUCTION 

1.1 SCOPE OF INVESTIGATION 

The photoelasto-plastic method utilizes the creep and “frozenl’ stress characteristics 

exhibited by epoxy resins and other polymer materials when subjected to a thermal 

cycle whose maximum temperature is significantly less than the “critical” temperature 

of the material. The resulting “frozen” stress-strain behavior is characterized by the 

generation of nonlinear effective stress-strain curves. Effective stress-strain curves 

of this nature were generated for two polymer materials, an epoxy and a polycarbonate 

for various thermal cycles in order to arrive at a material and associated thermal 

cycle which could be used to simulate the stress-strain behavior of an aluminum alloy. 

Also the associated birefringence was determined (calibration). Stress-strain simi- 

larity was established by use of the Ramberg-Osgood method of stress-strain repre- 

sentation. Upon selection of an appropriate model material and thermal cycle, 

elasto-plastic stress distributions were determined for infinite plates with centrally 

located holes to verify the usefulness of the method. This photoelasto-plastic method 

of stress analysis was then applied to study stress distributions in the vicinity of a 

simulated crack. 

1.2 BACKGROUND 

Neuber (Ref. 1) has treated analytically the stress-distributions in the vicinity of a 

crack in an infinite plate. The analysis shows a very rapid decrease in stress level 

at the leading edge of the crack. Therefore, for small values of Q/w, the crack- 

length to plate-width ratio, an infinite plate behavior would be expected. For the case 

of intermediate values of Q/w, Brossman and Kies (Ref. 2) suggest that a correction 

factor be applied to the stress concentration factors as determined by Neuber’s theory. 



This correction factor is approximate and applies only for intermediate values of f/w . 

According to Brossman and Kies, this correction factor is not necessary for values of 

n/w less than 0.35. These methods are applicable only in the case of plane-stress. 

The analytical solution of plane-stress plasticity problems of technical importance has 

proven to be forbiddingly complicated. Therefore, in recent years, attention has been 

given to experimental methods. The most popular experimental method is the use of 

bonded birefringent coatings. Wells and Post (Ref. 3) performed a photoelastic analysis 

of the dynamic stress distribution in the vicinity of a crack. Dixon (Ref. 4) has studied 

the effect of finite width for a centrally located crack. Dixon (Ref. 5) and Kawata (Ref. 6) 

have studied the elasto-plastic strain distributions for notches using the bonded bire- 

fringent coating method. Gerberich (Ref. 7) has applied the coating method to study 

strain distribution about a slowly growing crack. These methods assume elastic stress 

distributions and plane stress or only surface strains in the plastic range. It is known 

that even in the elastic range, the stress distribution is not uniform through the plate 

thickness for thick plates subjected to simple tension. This situation is more signifi- 

cant in the plastic range. Therefore, a three-dimensional method is needed. The 

developed photoelasto-plastic method described in this report could fulfill this need. 

In addition, this method could be utilized to study a wide variety of plasticity problems, 

particularly in design problems where it is desirable to utilize structural material in 

the plastic range to achieve high-strength and minimum-weight characteristics. 



Section 2 

TECHNICAL APPROACH 

2.1 PHOTOELASTO-PLASTIC THEORY 

The behavior of some photoelastic materials is elastic above a “critical” temperature. 

Therefore, using the “frozen stress” technique, it is possible to study three-dimensional 

elastic stress distribution in structural models by examination of slices removed.from 

the models. This technique is well established and has provided very useful information 

concerning stress concentrations and stress distributions associated with very complex 

engineering structures. 

At room temperature and temperature well below the critical temperature, some 

photoelastic materials experience a significant amount of creep. The occurrence of 

creep results in an effective stress-strain curve which is nonlinear. This behavior 

can be utilized in such a way as to provide a means of studying elasto-plastic stress 

distributions. The “frozen” stress feature provides for extension to three-dimensional 

situations. 

The “frozen stress” method consists of application of a load to a transparent plastic 

model at room temperature. The model is then brought to the critical temperature 

of the model material and then slowly cooled (to prevent thermal stresses) to room 

temperature. Upon removal of the load a stress pattern similar to that which would 

have existed at room temperature may be observed. In addition, the model may be 

sliced without relieving the “frozen stress” fringe pattern. This photoelastic fringe 

pattern represents an elastic stress distribution. An understanding of this phenomena 

can be obtained by consideration of the “Multiphase Theory of Plastics” by Kuske* 

*A. Kuske, “Multiphase Theory of Plastics,” Experimental Mechanics, Sept. 1962, 
p. 278 
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Plastics may be considered to consist of two phases: an elastic phase and a plastic 

phase. Birefringence results from a contribution by each phase and can be expressed 

as 

A = Cpt(ul - u2) + Cet(al - u2) (1) 
P e 

where 

C = stress optical coefficient 

t = optical path 

Ol - u2 = principal stress difference 

P = pertaining to plastic phase 

e = pertaining to elastic phase 

The stress optical coefficients C and Ce 
P 

are constants which depend upon the mate- 

rial . They are independent of temperature. The modulus of the elastic phase (E,) is 

also independent of temperature. The modulus of the plastic phase (.Ep) is a function 

of temperature, time and stress. When the photoelastic model is stressed, a portion 

of the stress is carried by each phase depending upon the relative modulus values of 

the two phases. At room temperature E >> Ee and the stress in the elastic phase 

is insignificant. As the temperature is iicreased, the modulus E decreases and 
P 

we find that the elastic phase carries more and more of the load until at the “critical” 

temperature (E 
P 

= 0) all the load is carried by the elastic phase. Then Eq. (1) becomes 

A = Cet(ul - u2) 
e 

(2) 

Therefore, the material behaves elastically at the “critical” temperature. Upon slowly 

cooling to room temperature, the plastic phase.hardens, thus “freezing” the elastic 

phase in a state of deformation. Upon removal of the load, the photoelastic pattern 

remains. Slicing does not disturb this pattern since it is “frozen” on a molecular 

scale. Thus, slices may be removed from the model and stresses determined in the 

plane of the slices. 
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If a loaded photoelastic model is subjected to a thermal cycle of Tmax significantly 

less than the critical temperature for the material, appreciable creep will be observed. 

In terms of the multi-phase theory, the modulus of the plastic phase diminishes with 

time and more load is carried by the elastic phase, resulting in a higher stress in this 

phase and greater elongation. Utilizing this creep feature, it is possible to generate 

an “effective” stress-strain curve that has nonlinear characteristics. “Effective” 

stress-strain curve refers to the relation between the “frozen stress” and strain de- 

fined as the permanent deformation per unit length measured after the specimen has 

undergone a specific thermal cycle. 

If a simple tensile specimen experiences a given stress level (aI) at room temperature 

and then is subjected to a specific thermal cycle (Fig. 1) while under load, the result- 

ing strain is composed of the elastic strain at maximum temperature and the strain 

resulting from creep which takes place during the thermal cycle. For various stress 

levels (ui > u2 > u3 > . . . ), the resulting strains (el > e2 > e3 > . . .) are frozen 

into the material. From these data an effective stress-strain curve can be constructed 

which would represent the “frozen” stress-strain characteristics of the material for a 

given thermal cycle. Figure 2 represents a type of curve constructed in this manner. 

As a result of the “frozen” strain, there corresponds a birefringence which is also 

frozen into the material due to the loading and thermal cycle. Measurement of this 

birefringence yields a curve of the type shown in Fig. 3. This amounts to essentially 

the calibration. 

After establishing the frozen stress-strain-birefringence characteristics for a given 

material and thermal cycle, a structural model may be subjected to a load system and 

the thermal cycle used in the calibration. Analysis of “frozen” birefringence in the 

structural model may then be. interpreted in terms of the stress using the effective 

stress-birefringence curve. The experimental results obtained in this manner can be 

applied to any material that exhibited a stress-strain curve similar to the “effective” 

stress-strain obtained for the model material. 
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TIME t- 

TIME (t) 

Fig. 1 Typical Thermal Cycle 

STRAIN (E) 

Fig. 2 Typical Effective Stress-Strain Curve 
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E. 1 

STRAIN (E) 

Fig. 3 Typical Birefringence Strain Curve 
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2.2 STRESS-STRAIN SIMILARITY 

Ramberg and Osgood (Ref. 9) have suggested a relation to describe stress-strain curves 

for materials. This relationship is 

Sn e=g+KE 
0 

where 

e ZZ strain 

S = stress 

E = modulus of elasticity 

Kandn = material constants 

This equation in dimensionless form is 

lmrnl n E =‘-J+ U 
ml 

(3) 

(4) 

where 

S 
u = 

s1 

s1 = secant yield strength (El = mlE) 

Also, ml represents a chosen constant 0 < ml < 1 . Choosing ml = 0.7 , Eq. 

(4) becomes 

,=,+$un 

Equation (5) rep resents all stress-strain curves which have the same shape factor n . 

Therefore, the “effective I1 stress-strain curve of the model material must have the 

same shape factor as the stress-strain curve for the prototype material in order that 

similarity exist. 
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.Section 3 

DEVELOPMENT AND VERIFICATION OF METHOD 

3.1 CALIBHATION PHASE 

3.1.1 Test Procedure 

During the calibration phase of this program two materials were investigated, an epoxv 

resin cured with 10 pbw* of diethanolamine curing agent and a polycarbonate material. 

The epoxy material was purchased in liquid resin form and cured in sheets 30 in. X 15 in. 

X l/2 in. From these sheets 0. l-in. thick tensile specimens were machined. Even 

though the calibration specimens were only 0. l-in. thick, it was necessary to prepare 

them from thick plates so that the calibration would be applicable to the thick infinite 

plates, since the properties of polymers are to some degree a function of the casting 

mass. Figure 4 shows an as-cast plate of the epoxy material along with the mold. 

The polycarbonate material was purchased in precast sheet l/8-in. thick from which 

the calibration specimens were machined. The polycarbonate material, as received, 

possesses considerable residual stresses in the plane of the sheet and a large stress 

distribution through the thickness. Therefore, it was necessary to stress relieve the 

polycarbonate material before testing. Stress relief was accomplished by heating 

slowly (5” F/hr) to 325” F and soaking at this temperature for approximately 12 hours 

and then cooling slowly (5” F/hr) to room temperature. 

The specimen configuration is shown in Fig. 5. A 2-in. gage length was scribed on the 

specimen surface for gage-length measurement prior to and after the test. From these 

gage-length measurements the axial strain was determined. Gage-length measurements 

were performed utilizing the x-y micrometer stage mounted on the polariscope. This 

*parts by weight 

9 



- c 

4~ cast B -_ 

PO+ Plak 
. . 

and 4ssocfated Mol, 

10 



E- 

$ HOLE - 6 PLACES 

SCRIBED GAGE LENGTH 

7 

I I 

! I 
i 

I 
I 

1.0 + 1.0 --L 

!i 

- 3.50 - 

2.0 
TYP. - 

l.OOR - 4 PLACES 

-+ - 

’ Q 
3:oo 

I 

j- 0.125 

Fig. 5 Calibration Specimen Configuration 



micrometer stage has a 0. OOOl-in. readout. The specimen was mounted on the micro- 

meter stage surface and the scribeline viewed on the ground-glass screen of the 

polariscope by use of transmitted light. The cross-hair marking on the ground-glass 

screen was placed at one of the scribe marks. The micrometer stage was adjusted 

until the other scribeline appeared at the cross-hair. The distance of the adjustment 

designates the gage length. The axial strain was computed from the change in gage 

length (before and after test) divided by the original gage length (e = a/lo). Figure 6 

shows the appearance of the scribe line on the ground-glass screen of the polariscope. 

The scribe line image is projected on the ground-glass screen as 10X magnification. 

After the initial gage lengths (1,) have been recorded along with the initial thickness 

(to) and width (wo), the specimens are then subjected to dead-weight loads. The 

specimens and test frame are placed in the stress-freezing oven, as shown in Fig. 7. 

The specimens were then subjected to a programmed thermal cycle consisting of the 

appropriate maximum temperature (Tmax), a heating-and-cooling rate of approximately 

5”F/hr, and a soak time at Tmax of two hours except where otherwise noted. 

After completion of the thermal cycle, the specimens are unloaded and removed from 

the stress-freezing oven. Then the final gage lengths lf are measured in the manner 

previously described, along with tf and wf . Also, birefringence measurements 

are taken after testing. Figure 8 represents typical frozen fringe order distribution 

and indicates uniform stress in the reduced section of the calibration specimen. 

3.1.2 Experimental Results (Calibration Phase) 

From the experimental data, effective stress-strain curves, nondimensionalized stress- 

strain curves and birefringence-strain curves were constructed. These curves are 

represented in Figs. 9 through 19. 

For the epoxy plus diethsnolamine material, there are two sets of curves presented, 

designated as batch A and batch B. The only difference between batch A and batch B 

is that the material was cast at different times from a different lot of the basic epoxy 
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Fig. 6 Calibration Specimen Scribe Line as It Appears on 
Polariscope Projection Screen 

Fig. 7 Loaded Calibration Specimens and Associated Test 
Frame in Furnace 
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Fig. 8 Typical Frozen Stress Fringe Pattern for Calibration 
Specimen 
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resin. It should be noted that the experimental data differ significantly between the 

two batches. Sufficient material (batch B) was cast from the same lot of basic resin 

(and at the same time) for calibration of the epoxy material and for analysis of infinite 

plates with holes. 

Also, two sets of curves are presented for the polycarbonate material designated as 

batch A and batch B. The polycarbonate calibration specimens were prepared from 

l/8-in. sheet stock, which is commercially available in already cast form. Sheets 

designated as batch A and batch B were purchased at different times and exhibited 

significantly different properties. This difference indicates that control of material 

properties is not part of the manufacturing procedure. It is even possible that manufac- 

turing techniques were different for the two batches of material. 

3.1.2. J Epoxy Material (Batch B) 

Effective stress-strain and birefringence curves were generated for the epoxy material 

(batch B) for thermal cycles consisting of maximum temperatures of 144, 150, 160, 

and 165” F. The heating-and-cooling rates of these thermal cycles were approximately 

5” F/hr and soak time was two hours. 

The effective stress-strain data for batch B are represented in Fig. 9. The nondimen- 

sionalized stress-strain curves,are shown in Fig. 10 along with the nondimensionalized 

stress-strain data for 2024(24S-T) aluminum alloy. The nondimensionalized stress- 

strain curves for thermal cycles with Tmax = 144, 150, and 160” F are identical and 

compare favorably with the aluminum alloy 2024(24S-T). Figure 11 represents the 

strain-birefringence curves for the thermal cycles of Tmax = 144, 150, 160, and 

165” F. The birefringence is approximately linearly related to strain. 

3.1.2.2 Epoxy Material (Batch A) 

Effective stress-strain and birefringence curves were generated for the epoxy mate- 

rial designated as batch A for four thermal cycles. Three of these thermal cycles 
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consisted of maximum temperatures of 165, 175, and 187”F, heating-and-cooling rates 

of 5” F per hour, and soak times of two hours. The remaining thermal cycle consisted 

of a maximum temperature of 175” F, heating rate of 440” F per hour, soak time of two 

hours, and a cooling rate of 5” F per hour. The effective stress-strain curves for 

batch A are represented in Fig.. 12. It should be noted that the two thermal cycles 

with Tmax = 175°F yield significantly different effective stress-strain curves. Since 

the creep characteristics of the materials are utilized in generating the effective stress- 

strain curves it would be expected that the effective stress-strain curve for high heating 

rates would be represented by strain values lower than those for low heating rates for 

comparable stress levels, due to the longer time duration for the test. The difference 

between the stress-strain curves for low and high rates indicates that some post curing 

(hardening) takes place during the heating portion of the cycle due to the longer time 

at temperature during the heating portion of the thermal cycle for the stress-strain 

curve with low heating rate. Even though there is a significant difference between the 

effective stress-strain curves for Tmax = 175” F, these curves yield the same non- 

dimensionalized stress-strain curve which is similar to 2024(24S-T) aluminum alloy. 

The nondimensionalized stress-strain curves for epoxy material, batch A are shown in 

Fig. 13. 

For batch A, a thermal cycle consisting of a maximum temperature of 187” F yields an 

elastic stress-strain curve and standard frozen-stress properties. In other words, the 

maximum temperature is near enough to the critical temperature of the material so 

that creep causes unloading of the plastic phase and complete loading of the elastic phase 

(loading of the molecular chain) during the thermal cycle. 

Figure 14 represents the strain birefringence curves for batch A material. Strain is 

approximately linearly related to birefringence. 
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3.1.2.3 Polycarbonate Material (Batch B) 

Effective stress-strain and birefringence curves were generated for the polycarbonate 

material (batch B) for thermal cycles consisting of maximum temperatures of 270, 

280, and 290°F. The heating-and-cooling rates of these cycles were approximately 

5” F per hour and soak times were eight hours. . The effective stress-strain curves 

are represented in Fig. 15, curves A and C, and Fig. 16. These curves have been 

nondimensionalized in Fig. 17. The associated strain birefringence curves are shown 

in Fig. 18, curves A and C, except for Tmax = 190°F. In this case it was not possible 

to measure birefringence due to the very high fringe order involved. On the basis of 

other data, fringe orders exceeding 150 were present in the 0.125-in. thick specimen 

for the lowest stress level (260 psi). 

3.1.2.4 Polycarbonate Material (Batch A) 

Two maximum temperatures (260 and 270” F) were used to generate the effective stress- 

strain curves for batch A. The same heating-and-cooling rates and soak times were 

used as for batch B. The effective stress-strain curves are shown in Fig. 15, curves 

B and D. The stress-strain curves have been nondimensionalized and compared with 

2024(24ST) aluminum alloy in Fig. 19. The strain-birefringence data are shown in 

Fig. 18, curves B and D. 

3.2 PHOTOELASTO-PLASTIC ANALYSIS OF INFINITE PLATES 

3.2.1 Test Procedure 

Based upon the results of the calibration phase, a material and thermal cycle was 

selected which would exhibit an effective stress-strain curve similar to an aluminum 

alloy. The material selected for use in the infinite plate study was an epoxy resin 

cured with 10 pbw* of diethanolamine curing agent, batch B. The infinite plate models 

*Parts by weight 
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were subjected to a thermal cycle consisting of a maximum temperature of 160” F, 

heating and cooling rates of 5” F per hour and soak time at maximum temperature of 

two hours while under a constant load. Four infinite plate models of the configuration. 

shown in Fig. 20 were machined from the selected material and batch number. These 

plates were 4 in. wide and contained a l/8-in. diameter centrally located hole. Two 

models each were machined to a thickness of 0.125 in. and 0.400 in. Each plate was 

subjected to constant tensile load throughout the thermal cycle. The load was applied 

and controlled by means of a hydraulic ram, hydraulic power supply, and servo con- 

trol system. The furnace, test frame, hydraulic ram, and associated instrumentation 

are shown in Fig. 21. 

In Fig. 22, the birefringence n/t has been replotted in terms of shear stress (T) 

from the curves of strain vs. birefringence and stress vs. strain for epoxy material, 

batch B, and thermal cycle Tmax = 160” F. Stresses were determined from bire- 

fringence measurements utilizing the curve in Fig. 22. 

3.2.2 Experimental Results (Verification Phase) 

3.2.2.1 Thin-Plate Models 

The thin-plate models had a thickness-to-hole-diameter ratio of 1.0. It was assumed 

that the condition of plane stress was approximately satisfied. Therefore, only the 

stress distributions along the y axis were determined. The two thin-plate models 

were subjected to tensile loading which would produce two different levels of plasticity, 

namely 

uJ”l = 0.11 (elastic) and %J”l = 0.71 

The coordinate axes are identified for the thin-plate models in Fig. 23. The thin- 

plate models were optically viewed with polarized light incident normal to the x-y 

plane. Observation in this direction provides information concerning the principal 
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Fig. 21 Hydraulic Ram, Servo Control, Test Frame, Furnace, 
and Associated Instrumentation for Infinite Plate 
Study 
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stress difference in the x-y plane. Fringe order measurements were made along the 

y axis in the vicinity of the hole using the Tardy compensation technique. It was 

necessary to reduce the thickness to approximately 0.027 in order to determine a 

reference fringe. Fringe order measurements along the y axis provide the distribu- 

tion of the (ax - uy) stresses. At the free boundary, (cx)max could be measured 

directly. A sub-slice was cut from the specimen, as shown in Fig. 23. Fringe order 

measurements taken for this sub-slice, when viewed in the x direction, provided the 

distribution of the uy stresses along the y axis. From the distribution of the (cx -uy) 

stresses and the u 
Y 

stresses, the ax stress distributions were determined for the 

two thin plates. The stress distributions for the thin-plate models are shown in 

Figs. 24 and 25. The stress distributions are plotted in terms of the ratio of the stress 

at the point c to the stress in the net section a, which was determined from P/A. 

The infinite plate of 2ro/h= 1.00 and load condition of a,/~, = 0.11 represents an 

elastic stress distribution. Referring to the effective stress-strain curve shown in 

Fig. 22, the maximum stress is approximately 160 psi. This is well below the elastic 

limit. 

The dashed curves in Fig. 24 represent the theoretical stress distributions assuming 

a plane stress condition. The maximum stress concentration factor CY~ measured 

experimentally is 3.3 which is approximately 10 percent higher than the theoretical 

value for the plane stress condition. The experimental stress distribution represented 

in Fig. 24 is actually representative of the midplane stresses. Therefore, the high 

stress-concentration factor tends to indicate the condition of plane stress is violated 

for a plate with a 2ro/h ratio of 1.00. 

According to an analysis of infinite plates with centrally located holes by J. B. Alblas 

(Ref. lo), a stress concentration factor of 3.1 is indicated for the condition of 

2ro/h = 1.0 at the midplane. 
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For the infinite plate (2ro/h= 1.0) and load condition u/u, = 0.71, considerable 

plastic flow occurs. The stress disturibution for the midplane of this model is shown 

in Fig. 25. Here again the dashed curves represent the analytical solution for the 

plane stress elastic condition. 

3.2.2.2 Thick-Plate Models 

The thick-plate models had a hole-diameter-to-thickness ratio of 0.33. The two 

thick-plate models were subjected to tensile loading which would produce two different 

levels of plasticity, u-/u, = 0.41 and 0.53. 

The slicing scheme used for the thick-plate models is shown in Fig. 26. The diagram 

in (a) shows the location and orientation of the surface slice (slice thickness of 0. 012 in. ) 

and midplane slice (slice thickness of 0.025 in. ). Observation of these slices in the z 

direction provided information concerning the distribution of (ux - uy) stresses as a 

function of y at z = 0 and z = h/2. 

Assuming symmetry of stresses at opposite sides of the hole, a slice was prepared for 

determination of the u z stresses. The slice location and orientation for determination 

of u z stresses is shown in (b) of Fig. 26. The slice was observed in the x direction. 

Optical measurements, performed on this slice for z = h/2 as a function y , provided 

for the distribution of the u stresses as a function y . The ux stress does not 
Y 

produce an optical effect for the slice because observation is in the x direction. 

Optical measurements, for the slice in (II) of Fig. 26, taken for z = 0 along the y 

axis, provide the distribution of the uz stresses as a function of y at z = 0 where 

the uz stresses are maximum, assuming u 
Y 

constant through the thickness. 

The stress distribution for the thick infinite plate (2ro/h = 0.31), loaded to u-/u1 = 

0.41, is shown in Fig. 27. The dashed curves represent the analytically determined 

stress distribution for the elastic plane stress condition. Also shown is the distribution 

of the u z stresses at the midplane where they are a m&mum. 
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The stress distribution for the thick infinite plate (2ro/h = 0.31) loaded to !J 

am’“l = 0.53 is shown in Fig. 28. Here, again, the dashed curves represent the 

analytically determined elastic plane stress condition. Figure 29 shows a typical 

frozen fringe order pattern for slices removed from the thick plate models used for 

determination of o - u stresses. 
x Y 
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Section 4 

DISCUSSION OF RESULTS 

4.1 DEVELOPMENT AND VERIFICATION 

4.1.1 Calibration Phase (Development Phase) 

The effective stress-strain curves generated during the course of this program were 

nondimensionalized by plotting stress S/S1 versus strain Ee/S1, where S1 repre- 

sents the secant yield strength for 0.7E. These curves were compared with non- 

dimensionalized stress-strain curves for several aluminum alloys plotted in terms of 

the same parameters. If similarity exists between the effective stress-strain curve 

for the photoelasto-plastic material and an aluminum alloy, they will yield the same 

nondimensional stress-strain curves. 

It was found that the epoxy material (batch B) yields an effective stress-strain curve 

similar to 2024-T3 aluminum alloy (transverse tension) when subjected to a thermal 

cycle consisting of a heating-and-cooling rate of 5°F per hr and any maximum tem- 

perature from 144” F through 160” F. The epoxy material (batch A) yielded aneffective 

stress-strain curve which simulates the uniaxial stress-strain behavior of 7178-T6 

aluminum alloy alclad sheet in transverse tension for a thermal cycle of heating-and- 

cooling rate of 5O F per hr and a maximum temperature of 165” F. 

The similarities mentioned above consider cases where the nondimensionalized stress- 

strain curves are almost identical. However, the epoxy resin could be used to approxi- 

mate almost any of the aluminum alloys for which the stress-strain curve has a gradual 

change in slope in the nonlinear range to determine empirical data concerning the 

elasto-plastic stress distributions resulting from flow. 
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Also, the epoxy material possesses very good machinability, making it possible to 

prepare the very thin slices (to 0.005 in.) required for three-dimensional analysis in e 
the vicinity of sharp notches. 

The polycarbonate material can be used to approximately simulate most aluminum 

alloys which exhibit gradual change in slope for their stress-strain curve in the non- 

linear range. However, the high residual stress in the as-received condition and the 

very poor machinability would make it virtually impossible to study three-dimensional 

problems where slicing is required. 

4. 1.2 Infinite Plate Study (Verification Phase) 

Utilizing an effective stress-strain and associated birefringence curve generated during 

the calibration phase, an analysis of the elasto-plastic stress distributions in infinite 

plates with centrally located holes was conducted. 

The stress concentration factors are shown in Fig. 30 as a function of the level of 

plasticity (oW/a,) . The thin infinite plate (2r,/h) was loaded to oW/ul = 0.11. This 

represented an elastic condition. The specimen was milled to 0.027-in. thick to deter- 

mine a reference fringe for application of the Tardy method of compensation assuming 

a plan&stress condition, therefore representing a midplane slice. The measured 

stress-concentration factor was about 10 percent higher than for the theoretical plane- 

stress value. This would indicate that the assumption of plane stress for this condition 

was not correct. J. B. Alblas (Ref. 10) has computed an elastic stress concentration 

of 3.1 at the midplane of this condition (2r,/h). The experimental value is about 

6-l/2 percent higher than computed by Alblas. The thin plate loaded to oW/al = 0.7 

yields an experimental stress concentration factor of 1.88. This value is approximately 

4-l/2 percent higher than predicted by Budiansky (Ref. 11)) and 14 percent higher than 

Neuber’ s theory predicts. The value predicted by Budiansky is for stress-strain curve 

with shape factor n = 9, whereas n = 7 for the experimental case. Neuber’s theory 

(Ref. 12) considers any arbitrary stress-strain curve; the curve in Fig. 30 was derived 

from Neuber’s theory for the stress-strain curve of the model material. 
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The thick-plate models were tested at uW/ul = 0.41 and 0.53. The stress distri- 

butions were determined for a surface slice and for a midplane slice. The measured 

stresses were higher at the midplane than at the surface in the vicinity of the hole. 

At a short distance from the hole the stresses did not vary through the thickness. The 

surface and midplane stress concentrations are shown in Fig. 30. The stress concen- 

tration factors at the midplane agree very well with Budiansky (Ref. ll), and the surface 

stress concentration factors agree with Neuber. Due to the higher ux stresses at the 

midplane of the thick-plate models, there arises a tensile uz which is a maximum at 

midplane and edge of the hole. The uz stresses are zero at the surface of the thick 

specimens. For a,/ul = 0.41 the maximum uz/uW = 0.65 and for am/u, = 0.53 

the maximum uz/u = 0.8. 00 
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Section 5 

APPLICATION OF METHOD TO SIMULATED CRACKS 

5.1 SPECIMEN FABRICATION FOR SIMULATED CRACKS 

Molds were fabricated for casting plates with centrally located simulated cracks. 

These molds were made of the same epoxy resin as the specimens to eliminate the 

relative shrinkage between mold and casting. A 3/4-in. thick aluminum template of 

the configuration shown in Fig. 20 was used to cast the molds. A provision was 

incorporated into the molds for suspending a centrally located piece of removable 

shim stock to make the simulated crack in the casting. The shim stock was 0.010 in. 

thick and of appropriate width to provide crack lengths of 0.1, 0.5, and 0.8 in. A 

total of twelve molds to cast 3/4-in. thick specimens were fabricated. One such mold 

with shim stock in place is shown in Fig. 31. Using the shim stock to provide simu- 

lated cracks in the plates yielded a crack configuration of the type shown in Fig. 32. 

Twelve castings were made for each crack length, ten with simulated cracks and two 

unperforated plates to be used for calibration specimens. The castings were subjected 

to a cure cycle consisting of 160” F for 12 hr and cooled at a rate of 5” F/hr. All cast- 

ings were then annealed using an annealing cycle consisting of a heating rate of 3” F/hr, 

soak time of 24 hr at maximum temperature of 230°F and a cooling rate of 2”F/hr. 

Test specimens were then machined to the appropriate thickness by fly cutting of the 

surface. Figure 33 shows a finished plate specimen with centrally located crack. 

Calibration specimens were machined to the configuration shown in Fig. 5 from the 

plane unperforated plates. 

5.2 CALIBRATION (SIMULATED CRACK STUDY) 

Calibration and generation of effective stress-strain curve was accomplished by sub- 

jecting specimens loaded to various levels of constant stress to a thermal cycle of 

T = 175°F. 
max 

After completion of the thermal cycle, specimens were unloaded and 

the “frozen” strain and birefringence (n/t) were determined as a function of the 
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Fig. j;l Mold To:, Casting Plates with Sirxlated Cracks 

Fig. 32 Simulated Crack Tip Configuration (After Test) 
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Fig. 33 Plate Specimen with Centrally Located 
Simulated Crack 
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stress. The details of the calibration were similar to those described previously in 

Section 3. 1.1. 

The results of the calibration are shown in Figs. 34 through 37. Figure 34 represents 

the relationship between stress and “frozen” strain for a thermal cycle of Tmax = 175’F. 

Calibration tests were not performed for samples representative of castings of all three 

crack lengths. Great care was taken to ensure that all castings experienced the same 

cure and annealing environment. It was therefore assumed that calibration tests per- 

formed on samples representative of the 0.5 crack length castings would be valid for 

the other crack lengths. To check the validity of this assumption, three samples. 

representative of the 0.8 crack length castings were tested. These data are shown in 

the figures. Figure 35 shows this stress-strain curve in nondimensional form. 

Figure 36 shows the relation between stress and birefringence and Fig. 37 between 

strain and birefringence. This information will be used to determine the photoelasto- 

plastic stress distributions from birefringence (n/t). 

5.3 PHOTOEMTIC ANALYSIS OF SIMULATED CRACKS 

Plates containing centrally located cracks were tested to determine the elastic stress 

distribution in the vicinity of the crack tip. For the elastic analysis plates of 0.1 in. 

thick were tested, having crack lengths (Per) of 0.1, 0.5, and 0.8 in. The photo- 

elastic “frozen” stress technique and shear difference method was used. The coor- 

dinate system used here is as shown in Fig. 23. That is, x corresponds to the load 

direction and y normal to the load direction with origin at the crack tip. The results 

are shown in Figs. 38 through 46. The stress concentration factor in a very flat 

ellipse or a narrow crack with a very small notch radius can be approximately cal- 

culated by: 

U X - = 2m + 1 (Ref. 15) 
“g 

(6) 
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where 

C = one-half the crack length 

P = radius of curvature of the notch p E 0.005 

Using this simple relationship, we obtain a calculated elastic stress concentration 

factor for the 0.8 in. crack length of 18.9 and for the 0.5 in. crack a value of 15.2, 

and for the 0.1 in. crack length a value of 7.35. A comparison between measured 

stress concentration factors and those computed from the above equation are compared 

in Fig. 41. 

5.4 PHOTOELASTO-PLASTIC ANALYSIS OF SIMULATED CRACKS 

Plates containing centrally located simulated cracks were tested to determine the 

effect of plate thickness and crack length on three-dimensional elasto-plastic stress 

distributions. Three crack lengths were considered (lcr = 0.1, 0.5, and 0,8 in. ). 

For each crack length three plate thicknesses (t = 0.1, 0.3, and 0.5 in. ) were tested 

at two levels of plasticity. Table I summarizes the test conditions for the photoelasto- 

plastic analysis of plates containing centrally located simulated cracks. 

5.4. 1 Acquisition and Reduction of Photoelasto-Plastic Data 

After freezing the elasto-plastic stress patterns into the plates for each of the test 

conditions shown in Table I, the plates were sliced according to the same/scheme 

used for the infinite plates with holes (Fig. 26). Surface slices were approximately 

0.010 in. thick while midplane slices were of the order of 0.020 in. thick. Measure- 

ment of birefringence was accomplished by use of a photo cell connected to a photo 

multiplier. Light intensity was recorded as a function of the y coordinate on an x-y 

plotter. Calibration of the system is necessary. This was accomplished using a 

diametral disk for which the fringe distribution is known or can be calculated along 

the line of symmetry normal to load direction by: 

n 2P -=- 
t lrdtf 

4d4 

(d2 + 4~~)~ 
+ 1 (Ref. 16) 1 (7) 
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Table I 

SUMMARY OF TEK3T CONDITIONS FOR PHOTOELASTO-PLASTIC ANALYSIS OF PLATFS 
CONTAINING CENTRALLYLOCATED SIMULA~D CRACKS 

0.1 0.1 * 177 .025 1.00 4.30 .4.20 
0.1 0.1 .262 .025 1.00 3.35 3.40 

0.1 0.3 -177 ,025 0.33 3*05 0.1 0.3 .248 .025 0.33 3.25 :z . 
0.1 0.5 .158 .025 
0.1 0.5 .240 ,025 

0.5 0.1 .2og .125 5.00 6.15 6.10 
0.5 0.1 .280 .125 5.00 4.80 5.60 
0.5 0.3 .280 .125 
0.5 0.3 .354 .125 
0.5 0.5 .2og .125 
0.5 0.5 .278 .125 

0.8 0.1 -095 .20 8.00 10.30 11.30 
0.8 0.1 .126 .20 8.00 11.00 11.00 
0.8 0.1 ,190 .20 8.00 7.60 
0.8 0.3 .126 .20 2.67 6:oo 8.10 
0.8 0.3 .1go .20 2.67 5*30 7.30 
0.8 0.5 .126 .20 1.60 7.10 7.20 
0.8 0.5 .1go .20 1.60 4.90 5.80 

MP - Indicates midplane, z = 0 

s - Indicates surface, z = h/2 where h 

3.30 
3.72 
3.05 

6.80 6.90 
5.65 7.30 

5.35 
5.32 

5.20 5.80 
5*50 5.90 

11.80 12.50 
12.50 11.60 

6:80 
9.80 

10.95 
7.00 10.30 
9.50 9.40 
7.30 7.50 

is plate thickness 

max IIBX 

0.70 1.45 1.0 o-73 
0.73 0.87 1.50 0.85 
0.77 o-73 1.63 1.34 
1.18 1.20 1.75 1.05 
0.78 0.80 1.20 0.84 
0.85 0.82 l-55 1.30 

1.77 2.80 
1.80 
1.00 z . 
1.45 2.30 
2.05 2.20 
2.60 2.80 

4.00 4.20 
4.20 4.05 

3.80 
2.55 3.60 
3.00 4.00 
4.02 4.00 
3-75 4.00 

nlax 

2.25 1.70 
2.80 1.30 
3.05 1.80 
3*55 1.70 

4150 
5.20 

1.38 
1.40 
2.10 
2.20 



where 

P = diametral load 

d = diameter of disk 

f = stress optical coefficient 

t = disk thickness 

The diametral disk is then placed in the polariscope and at the same magnification(40x) 

as used for the slice analysis the disk is traversed past the photo cell opening. The 

photo cell measures the average light intensity within its field (aperture). This field 

size and magnification determines essentially the gage length of the measurement. The 

field size (aperture opening) of the photocell sensor was approximately 0.005 in. in 

diameter. At 50x magnification this would result in a gage length of 0.0001 in. The 

traverse across the disk provides on an x-y recorder the light intensity distribution 

as a function of the distance from the edge of the disk. A typical curve of this nature 

is shown in Fig. 42. Based upon the dimensions of the disk, applied load, and stress 

optical coefficient, a plot of fringe order as a function of distance from the edge of the 

disk can be made. A typical plot of this nature is shown in Fig. 43. 

From Figs. 42 and 43 a cross plot is made of fringe order as a function of light 

intensity and such a plot is shown in Fig. 44. Therefore from traverses made on an 

actual slice it is possible to determine the fringe order at each point from the meas- 

ured light intensity. Figure 45 represents a plot of light intensity as a function of 

distance from crack tip for an actual slice. 

5.4.1.1 Photoelasto-Plastic Measurement Procedure 

A traverse of the type shown in Fig. 45 is generated along line OY (Fig. 46). This 

provides a distribution of the principal stress difference along the line of symmetry. 

Another traverse is then made along a line 0 ‘Y ’ displaced from the line of symmetry 

by a small amount &c/2 (0.003 in. ). Also the directions of the principal stresses 

were determined along O’Y’ by use of the photo cell (measuring angle 8 at minimum 

intensity). A typical distribution of the directions (0) are shown in Fig. 47. 
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Fig. 46 Typical Slice Configuration Showing Measurement Coordinates 



+20 

-20 

-30 

+/+--A 
/ +\ 

-+ ,+-+,, 
I I 
+ X 

ui (axis 

-I 
-I- 

I 
+ 

Y 

8 

0 .Ol .02 .03 .04 005 .06 

Y 
Fig. 47 Distribution Principal Stress Direction 

Along O'Y' 



Consider the equation of equilibrium 

from which we have 

i AT i Ar 
(ay)i = (uy)o - C ~ Ay - C ~ Ay 

0 0 

Assuming 

then, 

i AT 

0 

(9) 

(10) 

Using data of the type shown in Figs. 45 and 47, the shear stress distribution along 

0 ‘Y ’ is computed by 

?qy= x tu - u 
s/ 

2) sin28 

%=(r ) 
xy OY - %y)O’Y’ 

(11) 

(12) 
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From this equation the AT 
d 

ti as a function of y may be derived. A typical 

curve for AT~/Ax is shown in Fig. 48. Since (T 
Y 

=0 at x=O,y=O, Eq.(lO) 

becomes 

i A.7 
(ay)i = - C ~ AY (13) 

0 

Therefore, by graphical integration of data of type shown in Fig. 48, information is 

provided as to the u 
Y 

stress distribution along the y axis. Knowing the ox - u 
Y 

distribution and oy distribution along y , the principal stress distribution (c,) can 

be determined. 

The distribution of the stress component uz was determined along the y axis for 

2 = 0. Information as to the CJ - u 
z Y 

stresses was determined from photoelasto- 

plastic observations of a transverse slice as illustrated in Fig. 26b. A typical dis- 

tribution of the oz - u stresses as a function of y for z = 0 is shown in Fig. 49. 

Then from the uy dis:ribution, the uz distribution is determined. 

5.4.2 Presentation of Results for Photoelasto-Plastic Analysis of Plates Containing 
Cracks 

The coordinate axis used in the presentation of the photoelasto-plastic results for 

plates with cracks is indicated in Fig. 26. Three slices were removed from the test 

specimens, midplane, surface and transverse slices as indicated in Fig. 26. The 

photoelasto-plastic analysis of these slices yield the ux, u , and uz stress dis- 
Y 

tributions as a function of y at the crack tip. The shear difference method of analysis 

was used to determine these stress components. The details concerning this analysis 

procedure was described in Section 4.4.1.1. 

The elasto-plastic analysis was performed for three crack lengths, each for three 

plate thicknesses and each combination tested at two levels of plasticity. These test 

conditions are summarized in Table I. The results are shown in Figs. 50 through 86. 
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Section 6 

DISCUSSION OF RESULTS (SIMULATED CRACKS) 

Based on the elasto-plastic stress distributions, some general observations can be 

made. First it should be noted that the ux stress has a maximum value, not at the 

tip of the crack, but a short distance from the tip. This is caused by the yield condi- 

tion at the edge of the crack tip being one based on a uniaxial stress (biaxial at the 

midplane) while at a short distance from the crack tip the yield condition depends on 

the biaxial stress state (tri-axial at midplane). Second, the magnitude of the maxi- 

mum (T 
Y 

stress occurs at approximately 6 to 7 mils from the crack tip. The magni- 

tude of this stress tends to be higher at the midplane than at the surface. Third, at 

the midplane at least for the thicker specimens, a rather high value for oz develops. 

It should also be noted that, similar to ox, the oz value is higher at a short distance 

from the tip of the crack than it is at the edge of the crack. 

The photoelastic analysis shows stress concentration factors of 14.5 for the 0.8 in. 

crack length, 11 for the 0.5 in. crack length and 6.1 for 0.1 in. crack length. The 

elasto-plastic stress concentration factors are shown in Figs. 8’7 through 92. Figures 87 

through 89 represent elasto-plastic stress concentration factors for the surface slices 

(z = t/2) as a function of the level of plasticity (ug/sl) . In these figures an attempt 

has been made to show the effect or lack of effect of plate thickness upon the surface 

stress concentration factors. These figures indicate the tendency of the stress con- 

centration to be higher for the 0. 1 in. thick plates than for the thicker plates at least 

for intermediate levels of plasticity. Also, the surface stress concentration factors 

have a tendency to become independent of plate thickness for higher levels of plasticity. 

For the 0.3 and 0.5 in. plate thickness, the stress concentration data is represented 

by the same curve. Figures 90 through 92 represent the elasto-plastic stress con- 

centration factors for the midplanes (z = 0). Here a slightly different trend is 

observed. In general the stress concentration factors tend to be higher for the thinner 

109 



+ - t =O.l 
0 - t =0.3 
x - t =0.5 

Plasticity Level, c7 /cJ 
is 1 

Fig. 87 Stress Concentration Factor For Various Levels of 
Plasticity at the Surface for Rcr = 0.1 

110 



8 

6 

.l .2 93 
Plasticity Level, 17 

$ 
al 

Fig. 88 Stress Concentration Factors For Various Levels of Plasticity 
at the Surface for Rcr q o 5 . 

. 



+ - t =O.l 
Q - t =0.3 
x - t =0.5 

-- 

.1 .2 -3 .4 
Plasticity Level, u 

g/ 
cJ 

1 
Fig. 89 Stress Concentration Factors at the Surface For Various Levels of Plasticity 



+ - t = 0.1 
0 - t = 0.3 
x - t = 0.5 

.l .2 -3 
Plasticity Level, u /a 

g 1' 
Fig. 90 Stress Concefitration Factors forVarious Levels of Plasticity 

at the Midplane for Rcr = o-1 . 

113 



+ - t = 0.1 + - t = 0.1 

e - t = 0.3 e - t = 0.3 

10 10 
x - t = 0.5 x - t = 0.5 

ii ii 
0 0 

Plasticity Level, u /u 
@; 1 

Fig. 91 Stresti Concentration Factors For Various Levels of Plasticity, Midplme Rcr = .5 

3 : -. 



12 

10 

+ -t=a1 
8 - t =0.3 
x - t =0.5 

.2 -3 
Plasticity Level, u /0 

g 1 
Fig. 92 Stress Concentration Factors for Various Levels of Plasticity, Midplane Rcr = 0.8 



plates and do not come together at the higher plasticity levels as was the tendency at 

the surface. It is realized that based on the limited number of data points perhaps too 

much significance may be placed on these trends and that the stress concentration 

curves would be more reasonably represented by average curves. However, the trends 

do appear to exist and the figures representing stress concentration factors are pre- 

sented in their present form to stimulate discussion. 

The maximum crz stress measured at the midplane is plotted as a function of the plate 

thickness in Figs. 93 through 95. For the 0.8 crack length (Fig. 93) the maximum crz 

as a function of plate thickness exhibits the same general trend as observed for the 

0.5 in. crack length (Fig. 94). However, higher values are observed for the 0.8 crack 

length. For the 0.1 in. crack length (Fig. 95), a rather unusual behavior is indicated 

for the maximum CJ z stress as a function of plate thickness. The points on the curves 

in Fig. 95 are not for the same gross stress (u,) but are close enough to indicate the 

behavior as shown by the curves. An explanation for this behavior is not available. 

However, it should be noted that each point in Fig. 95 represents an individual test 

and test specimen. Should this behavior be attributed to experimental error, it is 

unlikely that the two curves would show the same trend. 

Utilizing the elasto-plastic stress distributions and the distortion energy theory, the 

approximate elastic-plastic boundaries through plate thickness were determined. 

Based on the distortion energy theory, principal stresses are related to the uniaxial 

yield stress (0,) in the following manner: 

6 X - uz) 
2 

+ bz - uyl2 + (a 
Y 

- cJ2 = 2ci 

where (T 
0 

= proportional limit (600 psi, reference Fig. 34). From measured values 

of c and CJ a 
Y 

z at a point, a x was computed which represents the ux stress value 

at yield required to support the measured IJ and c 
Y Z’ 

If the measured ux stress is 

greater than the Ex stress then the point is in the plastic state. The location atwhich 

u x equals Zx represents the elastic-plastic boundary. Figures 96 through 101 show 
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the elastic-plastic boundary through the plate thickness. These figures indicate that 

the plastic zone penetration extends farther from the crack tip at the surface than at 

the midplane yet the stresses at the elastic-plastic boundary of the midplane are much 

higher than at the elastic-plastic boundary at the surface. This is caused by the 

higher yield condition at the midplane. For example, consider Fig. 96, o /a is 
g 1 

equal to 0.248. The ax stress at the elastic-plastic boundary for the surface is 

700 psi while for the midplane ux is 1100 psi. For the lower level of plasticity 

‘u& = 0.177) the ax stress at the elastic-plastic boundary of the surface is 670 psi 

while for the midplane ax is 870. This indicates that the stress condition for the 

surface has not increased significantly due to the higher loading, but the higher loading 

has increased the plastic zone penetration. On the other hand at midplane, the plastic 

zone penetration has increased only slightly but the yield condition has increased 

almost 30 percent. In general the same type of behavior is observed in the other 

figures (Figs. 97 through 101). This, in effect, is compatible with observations of 

fracture surfaces for thick aluminum plates, i. e., crack propagation by brittle 

fracture at the midplane resulting in the %.mneling~l effect. 

Therefore, the elastic-plastic boundaries through the thickness indicate a tendency 

toward midplane brittle fracture and surface yielding (tunneling effect). In addition, 

two specimens fractured inadvertently during the elasto-plastic stress freezing A 

operation. Nevertheless, examination of these fracture surfaces is very significant 

in that it further illustrates the above mentioned %mneling’l effect. 

Figure 102 shows the crack configuration in a transverse slice for Lcr = 0.8 and 

t = 0.5. This crack has initiated at the midplane but has not propagated far enough 

to extend to the surface. Yet, already it exhibits the tunneling configuration. 

Figure 103 represents the complete fracture surface of another specimen of Per = 0.8 

and t = 0.5. Here again the %,umelingl’ effect and midplane brittle fracture is 

indicated. Figure 104 represents the fracture surface for a specimen with Icr = 0.1 

and t = 0.5, indicating the same phenomena. 
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Fig. 102 Crack Initiated in a Plate of Acr = 0.8 and t = 0.5 as 
Viewed in Transverse Slice 

Fig. 103 Fracture Surface for Plate with dcr = 0.8 and t = 0.5 
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Fig. l& Fracture Surface for Plate with 

a cr = 0.1 and t ='0.5 
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Section 7 

CONCLUSIONS 

Based upon the experimental work of this program concerning the development and 

application of the photoelasto-plastic method to study the stresses associated with 

plastic flow in the vicinity of a simulated crack, the following conclusions have 

been reached: 

l It is possible to generate an effective stress-strain curve similar to an 

aluminum alloy by the “frozen” stress technique using an appropriate 

thermal cycle whose maximum temperature is significantly below the 

critical temperature of the model material. 

l The above-mentioned method can be used to determine the stress 

concentration factors in infinite plates with centrally located holes 

for elasto-plastic situations. 

l The method also yields realistic information concerning stress 

concentration factors and stress variation through plate thickness 

caused by plastic flow in plates with centrally located simulated 

cracks. No theory exists for an accurate comparison. 

l This method also yields the same type of fracture surface (tunneling) 

.for thick plates as has been observed for aluminum alloys. 
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